DETAILED

PROGRAMMING
OF THE

DIGI-COVIP1

EXPERIMENTS

INTRODUCTION
What to expect from this boolklet,
Chapter | — BODLEAN ALGEBEA
A simplified introduction to the principles of the computer algebra of
binary numbers.
Chapter 2 — EXPERIMENTS:
Experiment 4 — BANK LOCK
Make sure you understand how DIGI-COMP [works and learn how to
write Booclean equations from the Coding Sheet.
Experiment 5 — SEQUENTIAL BANK LOCK
How to program DIGI-COMP I from Boolean equations.
Experiment 7 — SPACE SHIP CHECK OUT
Make doubly sure vou understand how DIGI-COMP 1 works and prac-
tice writing Boolean equations from Coding Sheet.
Experiment 3 — AUTOMATI. FLEVATGR
The concepl of memory and the difference between remembering and
computing.
Experivient 6 — HO-HUM
Synthesizing, organizing and programming a ptoblem.
Experiment 10 — BINARY COUNTER
Use of s Truth Table in writing a program, and applications of
Boolean Algebra to simplify logic.
Experiment # — GUESS THE NUMBER
Development of a more complex trath table,
Experiment 12 — BINARY NUMBER COMPARATOR
The use of a comparator, how to modify & program to improve the
computers performance, and the uze of the OR gate,
Experiment {3 = BINARY ADDER
How to design & Binary Adding Machine and a new technique of
reducing Boolean algebraic equations.
Experiment 14 — BINARY SUBTRACTOR
The logical design of a binary subtracting machine using a Truth
Table,
Experiment 15 — BINARY MULTIPLIER
The logical design of a binary multiplying machine using a Truth
Table, An example of the simplicity of binarv numbers,
Experiment 11 — GAME OF NIM
How to design a game-playing machine, uging the Flow Chart Method.
How probabilities can determine the deeision making process of a
computer,

AFPFPENDIX
Amswers (o Questions
Hlank Coding Sheets

% jg&E E5R IHC.
ALL RIGHTS RESERVED
HOT TO BE COPIED IM WHOLE OR IN PART

I
o

12

14

16

30

i3

36

39

42

48
50

INTRODUCTION

This bookler bas been prepared because of the overwbelming acceptance of IG-COMP']
and the many requests for details of the programming for each problem in its Manual.
It can be belpful to everyone who desires to know more aboul programming and computer

fogical design.

An explanation of bow eack of the programs for the experiments in the DIGI-COMP |
Manual were derived will be given. In duing so, it should become apparent bow to derive
frograms for origingl problems.

The experiments given in the DIGI-COMP | Manual will be presenied bhere in the order of
the complexity of writing the program, Although this is not the order of the DIGFCOMP |
Manual, the experiments will retain the same nunibers for easy identification.

The experiments will illustrate various technigues used in programming and n computer
logical design, The objectives of vack experiment are outlined in the Table of Contents.

Chaprer |
BEOOLEAN ALGEBRA

Before we bepin deriving the programs, a shott course in Boolean Algebra is in order,
Don't let that word scare you, for remember, the reason all digital computers use binary
arithmetic is its simplicity, snd Boolean Algebra is just the slgebra of binary atithmetic,
On Page 13 of the DIGI-COMP 1 Instruction Manual, the terms used are defined as follows:

A =True =1

A = False = 0 (A is read ““Not A'")

B=Tme =1

B = False = () (B is read “Not B'")

C = False = 0 (C is read “Not C'1)
The operations or connections between the terms are:

The AND operation* is denoted by a dot, or multiplication sign** and the OR operation®
is denoted by a plus er addition sign.** (The dot iz omitted for brevity in some cases,
but it should be understood that a det is implied when there is no sign between terms.)

These operations may be illustrated graphically by what is known as a Venn Diagram, |

Circle A

/ J,u" Circle B

=1
=

Venn Diggram for Two Variables
FIGURE 1

“la formal logic the AND operation is called the INTERSECTION and the OR aperation
iz called the UNION.

**The dot and plus are used to denote the AND and QR operations simply because there
are several rules of algebra which are similar to those of Boolean Algebra. However, you
must remember that the dot is read AND and the plus is read OR., These do not, in any
sense of the word, mean multiply and add,

All points inside the “*A' circle are represented by the variable A, and outzside the A"
circle by the variable A (not AY,

All points inside the B’ circle are represented by the variable B, and outside the “‘B"
circle by the variable B (not B).

Where the two circles overlap, the points are in both the *“*A’ circle AND the "B circle.
Thus the points in this area are designated A + B (A and B).

The points owtside of both circles do not belong to either zet, and are therefore desgig-
nated A - B (not A and not B).

The points in A, but not in B are designated A - B (A and not B) and similarly the points
in B, but not in A are designated & - B (not A and B).

Another way of locking at the Venn Diagram is illustrated in Figure 2.

The points in either ""A" circle OR ‘B’ circle represent the OR opetation (or UNION)
and would be written A + B (A or B).

Circle A

Circle B

A+ B

FIGURE Z

The area which is in neither circle is written (A + B) (read not A or B),
Mow we are ready to develop the rules of Boolean Algebra using these Venn Diagrams.

In Figure 1 notice that all points within the area A - B are the same as those within
B - A, thus

A-B=B:-A (1)
But also notice that points within the area A - B do nor equal the peints within the

area &« B.
5

In Figure 2, points within the area A + B are the same as points within the area B + A,
thus

A+B=B+4A {2
It should be noted that the AND and OR functions are associative. That is:
(A-BYC=A(B.-C) (3
and
(A+B)+C=A+(B+C)
Also, each function is distributive with respect to the other, That is:
AB+AC=AB+0O) £5)
and

(A+B)(A+C)=A+BC (6)

Equation (5) simply means that yvou can “"factor’ out a common term. Equation (8) defines
the method for expanding a “'binomial’’ in Boolean Algebra.

In Table 1, on the following page, some simple Boolean equations are presented with
corresponding Venn Diagrams and DIGI-COMP coding sheets. Using the table we shall
develop several useful Boolean relationships.

At this point we shall discuss the connection between the equations and the Venn Dia-
grams. In Chapter II the connection between the eguations and the Coding Sheet will be
discussed,

Tahle 1

Chart l?lr' Venn Dfﬂgrﬁ‘.ms and ngf- I.’:uaiﬁ'p Codes

BOOLEAN VENN 2
EQUATION SIAGRAM DIGI-COMP CODING SHEET
T F
(a) C=A &k
[erd [
= | T| F
(b) C=A - I B
| v [
T F
(¢) C=B i v
< ot
_ T
(dy C=B A
) C
S F
) c=anAND Ak
(=] c
d
S T F
(fy €=AB AL
=] L
ol [
= T F
(£) C=AB ME
= Lo
-~ T F
(hy C=AB 2 i
o =
TILEWNT IF é
@ c=a+BAUN 8 - L
- = c
T Fi11 T F
(i) C=A+B i =
& <
- TILEIL TIF j
ik} C=4+B At i
[s =
= T F ' T 1 F EI
1y Cc=K+B a |* L
= c
o Er g =%l
(m) C=(AB) +(A-B) - Y
[=
R T oF
() C =(AB) +(A +B) B L =
= =
Tl E
(@) €=0 g ou
T F
(p) C=1 &
=1 o

Mote that a Venn Diagram for a function joined by the OR operation is just the super
position (the union) of one diagram upon the other. (Any area shaded in either diagram is
shaded in the joined diagram.)

A Venn Diagram for a function joined by the AND operation is the Intersection of the two
diagrams. (The only area shaded is that which was shaded in BOTH separate diagrams.)

In Table 1, Equation (o) C = O, therefore, there are no points shaded in the Venn Diagram.
The Venn Diagram for Equation (p) has all points shaded. Thus a point anywhere in the

Diagram satisfies the eguation which is denoted by C = 1. Look at Equations (&) and (b)
and shade in the Venn Diagram below for the Equation

If you did it propesly the entire diagram should be shaded in. Thus
A+A=1 (8)

Now, look at Equation (i}, In the Venn Diagram below, shade in the area C©=A + B. (The
area not shaded in the Table.)

Comparing this Diagram to the one for Equation (h), shows that the points in C =& B
are the same as those for C = A + B, therefore

5-E-ETH (@

This iz an illustration of DeMorgan's Theorem, which states that any binary expression
is equal to the negation of the expression obtained by changing all unions to intersec-
tions and vice versa, and by replacing each variable with its negation. Another example
would be

A B=A+TF (107
8

This can be verified by locking at the Venn Diagram of the negation of Equatien (e}

C=A"F

which i=

and comparing it to the diagram for Equation (1).

Many similar relationships can be derived from the Venn Diagrams, These are very con-
venient in the simplification of the programs to be written later.

Chapter 1]

EXPERIMENTS

EXPERIMENT 4 — BANK LOCK
Each morning the president of the MONEY bank has to open the bank vault. It is & com-
bination lock using binary numbers. This morning the president was surprised to find he

couldn’t remember the combination. Can you open the vault for him?

Program DIGI-COMP as in the coding sheet below:

1 2 3 4 5 8
T FlY T ERlx v Fls TEA T Fls T s
. | cC L c r L ! '1 L
B L, e QU Lle aur] | Y
= L_I'___ L.. "- l-..! . J_ L C_

STEP 1 — Use Front Panel Card 1.

STEP 2 — You guess the binary combination and manually zet the combina-
tion into the three flip-flops.

STEP 3 — Cycle the clock ONCE.

1 1
If you see 1 in the Read-Out, you have successfully opened the vault! If you do not see -
try &gain! What is your chance of opening the vault on the first try?

Your chance of guessing the right combination to open the vault was only 1 out of 8, but
you should have gotten it the first try — did you? This experiment was presented to be
sure vou understand how DIGI-COMP works.

1
You should have noticed that, in order to et !in the read-out, you had to move clock
rods 2, 4 and 6 (the set rods). (Remember that to SET mesns to zet a flip-flop to 1, and
to RESET,means to reset a flip-flop to 0. To do this, the even numbered logic rods had to

be free to move in when the clock was cyeled.

1
Now, set up the Flip-Flops to Read-Out | and lock at logic rods 2, 4 and 6. They are all
free to move in when the clock is cycled, Try it!

To see how the Ceding Sheet ties in with the Boolean Algebra equations, look at each
logic rod individually,

Logic Rod %1 is connected to Cleck Rod #1 which is a RESET Rod, If clock rod #1 is
activated, it will move the A flip-flop to ZERO, because there is a clock tube on the
A flip-flop in the #1 position. For Clock Rod #1 to be activated. Logic Raod »1 must be
free to move in. For this logic rod to be free to move in, all three flip-flops must be in
the "1" position. Now to put this in equation form:

10

Reset Awhen A=land BE=land C=1 (11}

Now we will replace each part of the sentence by its “'short hand’' algebraic counterparl
as follows:

““Reset A’* is replaced by “A"’

""When" is replaced by *="'

“p =1" is replaced by “'AY

“AND” is replaced by '-"

“B =1" iz replaced by "‘B"

“C =1" is replaced by “*C"
Therefore, the sentence {11) may be replaced by the equation:

A=A&-B:C
{notice how the logic rod is operating as an AND gate)

Now, to do the same thing for Clock Rod #2. If this rod is activated it will ““SET"’ the
A Flip-Flop to 1. And this will happen only if Logic Red #2 moves in of if A =1 AND
B =0 AND C = 1. Using the same relations as before;

A=A E o

Clock Rods #4 and #6 operate just like 22, except they set Flip-Flops B and C. The
equations for them are then:

E:A-ﬁ*ﬂ
c=a-B.¢C

Be sure you understand how these eguations were derived from the Coding Sheet. This
process, or the reverse of it, will be repeated in all Experiments to follow,

Mow. turn back to Table 1 of Chapter I, and study the relation between the Boclean
Equations and the Coding Sheets [or the equations.

11

EXPERIMENT 5 - SEQUENTIAL BANK LOCK

To make it more difficult for anyone but the president of the bank to open the vault, a new
tvpe lock was installed. This lock requires fwo binary numbers in & particular arder to
open it. Program DIGI-COMP according to the coding sheet,

1 2 3 4 5 5
T 1 T FlZ T F K] T Fl 4 T F 5 T F} &
| Tl

A ILic I L

8 ol L DU Ll e four L

! 1
c B \ L \ c

To operate DIGI-COMP:
STEP 1 — Use Front Panel Card I,
STEP 2 — Make sure clock is all the way to the right.

o
STEP 3 — Manually move all flip-flops to the right. (See 2 in the Read-Out.)

o0 1

STEP 4 — Guess the first binsry number oo™, and manually enter

it in the A and B flip-flops,

STEP 5 — Cycle the clock ONCE. If the C flip-flop goes to 1" then the
number you entered was correct and go to step 6. If it stays at
U0 try Steps 4 and 5 again,
0O 1 1
STEP 6 — Guess the second binary number G HA and
manually enter it in flip-flops A and B,

e A
STEP 7 — Cycle the elock ONCE. If you see ! in the Read-Out, you have

opened the vault. If not, try Steps 5 and 6 again,
This time what is your chance of opening the vault the first try?

This problem is twice as hard as Experiment 4 to guess the right combination; but it
izn't any harder to fipure ocut the solution if you understand how DIGI-COMP works.

To get the first number in the combination you should have noticed that if Logic Rod 6
were activated, a ‘1" would have appeared in the “C'* Flip-Flop Now set the ““A'’

Flip-Flop to *'1’' and Legic Rod 6 is free to move in. Thus, the first combination you
should have picked was 8.

Wow you want Flip-Flops 4 and B to be set to 1. So loock %t Positions 2 and 4. What
combination will let these Logic Rods move in? That's right — 1.

To do this problem in the more precise language of computers, you should write it in
equation form:

12

Combination 1 — SetC=A -B-C

Set

o EzA-B-
Cun:lhmatmni-—sﬂ‘q: B

= =
0y

Notice how the three equations compare with the Coding Sheet. “'SET C'' is programmed
on Logic Red 6; “SET B” on Logic Rod 4, and “SET A’' on Logic Rod 2. See how, as
in Experiment 4, the Logic Red acts as an AND Gate. (A and B and C must be in the
proper position for it to be activated.)

Logic Rods 1, 3 and 5 are for Resetting the flip-flops to zero, and Legic Rods 2, 4 and 6
are for Setting the flip-flops to ONE.

If @ term has a BAR over it in the equation, (such as B) put a Logic Tube on the ““F"’
TAB of the B Flip-Flop.

If a term DOES NOT have & BAR over it (such as C) put a Logic Tube on the “T* TAB
of the C Flip-Flop.

Since positions 2, 4 and 6 are identical except for the location of the Clock Tubes the
selection of a pesition for a particular AND function is ARBITRARY. That is, positions
2, 4 and 6 could have been interchanged. (Since the EVEN numbered positions are for
Setting to 1, and the ODD numbered positions are for Resetting to 0, THE EVEN AND
ODD NUMBERED POSITIONS MAY NOT BE INTERCHANGED.)

For instance, if we interchanged positions 2 and 6 the Coding Sheet would be:

1 - S 4 5 &
rely relz vorls toela o vols Tele
S | I O O O e
B =1Th L :Jm) L;_____E:__ ouf| L
c |\ e N ¥ 1]

If vou program DIGI-COMP sccording to this it will stiil operate in the same manner.

13

EXPERIMENT 7 - SPACE SHIP CHECK OUT
(A Job For An Astronaut)

This is the last moment before ““blast off'’, It is time for vou to make sure all the im-
portant parts {*‘systems’") of vour space ship are operating properly. You must now go
through the final ““check-out procedura’™,
If anything is wrong the launching will be canceled,
There are three systems to be checked:

1. Oxygen system.

2. Space-Ship controls.

3. Radio.

To check these systems the following gquestions are asked. They must be answered
carrectly to avoid a cancellation of the launch.

1, How much oxygen is flowing?

2. Is the ""control stick™ in the correct position?

3 To what frequency is your radio turned?
All 3 answers have a numerical value, These values will be checked one at a time with
the values stored in DIGI-COMP. If they check correctly the computer will indicate that
the system is “A-O.K.'" If not, the computer will indicate a malfunction {not working

properly).

Program DIGI-COMP according to the coding sheet:

1 2
T Flt T Fl-2 T Fyas T Fla T FPE: TF .8
[l | ' |
A LA L L L
=] Uy L L c LiC Qur L
[i. L L L Ly c

Te operate DIGI-COMP:
STEP 1 — Use Front Panel Card 1.

S5TEP 2 — Move all logic rods to INACTIVE (tum to the left) except
Nos. 2 and 3.

STEP 3 — Guess how much oxygen is flowing and manually move the
flip-flops to the numerical value {anything from 000 to 111).

14

e R e e oy e

STEP 4 — Cycle the clock ONCE. If the result is 1 in the Read-Out, then
the system is operating *“*A-0.K.'", IfJT.hE result has a 0"
ANYPLACE, then the system iz NOT operating correctly,
Move the ﬂip—ﬂu;is and cycle the clock unmtil you get the
“A-O.K." signal, 1.

STEP 5 — Repeat Steps 3 and 4 for the next two questions. For the
second question move logic rod number 4 to the ACTIVE
POSITION (turn to the right), For the third question move
logie rod number 6 to the right.

When all three systems are “‘A-0.K."" you are ready for your interplanetary voyape.

Try to blast off the FIRST try.

It should be duck soup by now — if not, you'd better go back to Experiment 4 and start
apgain.

To write the Boolean Equations for this program, proceed in the same manner as Experi-

ment 4, only now you should be able to just look at the program on the Coding Sheet and
weite the equations. To check yourzelf, see Page 48 for the equations.

15

EXPERIMENT 3 - AUTOMATIC ELEVATOR

The automatic elevator i a common example of automation which uses MEMORY. A
simple automatic elevator is the two floor elevator. The automatic system is required to
REMEMBER at which of the two floors it has stopped.

In the elevator there are two buttons, one to tell the elevator to go to the 1st floor and
the second to tell it to go to the 2nd floor, On each floor there is a button {CALL
button) which you can push to tell the elevator to come to your floor.

Imagine the CALL button on the 1st floor is the same as the button in the elevator direct-
ing it to the 1lst floor. Also, the 2nd floor CALL button is the same as the 2nd floor
button in the elevator. Put FRONT PANEL CARD II into place. On this card there is
marked “UP-DOWN". If the bottom flip-flop is at ‘1", the elevator is directed to the
2nd floor, and if it is at 0", to the 1st floor. (Look at the Read-Out next to UP-DOWN,)
The floor at which the elevator is located is indicated by a ‘“1" in the Read-Out by
the floor.

DIGI-COMF can be used to show how this elevator works. PROGRAM DIGI-COMP
according to the coding sheet.

1 2 a 4 5
T Fl & T Fl2 T Fl A T F| 4 T FJ & TFEI
B c -
B o - |
[#= 1l L. L L J|_ 1

To operate DIGI-COMP:

STEP 1 — Make sure logic and clock tubes are ONLY in the positions
indicated on the coding sheet.

STEP 2 — Make sure all LOGIC RODS are in the ACTIVE POSITION
(turned to the right) and the CLOCK is all the way out {to
the right).

STEP 3 — Manually set the "‘up—down'' flip-flop to ““1" if you want to
go up or to 07" if you want to go down.

STEP 4 — Cyele the clock.

This experiment is in the DIGI-COMP Manual to illustrate the concept of a MEMORY.
DIGI-COMP does not really compute anything in this problem. It simply REMEMBERS
which floor it is on, so that it knows which way to go when the button is pushed,

To see how it is done, program DIGI-COMP as in the Coding Sheet,

MNow, set the Bottom ‘“C'" Flip-Flop to zero. Notice that the first and fourth Logic Rods
are not blocked and can be pulled in. Then the first Clock Rod sets the “A'" Flip-Flop
to zero and the fourth Clock Red sets the ‘B Flip-Flop to 1.

16

The second and third Logic Rods operate in & similar manner to take the elevator to the
second floor.

We said before that DIGI-COMP wasn't computing in this experiment — it was memorizing.
It remembers which floor it is to go to, but not which floer it is at,

1
Set the Flip-Flops to read ¢, This means that you want to go to the Second Floor — but
you're already there! When you cycle the Clock the second and third Logic Rods are
still free to move in; thus, the elevator motor would start needlessly.

Now, we want to cortect the situation and make the elevator operate more efficiently.
To do this put Logic Tubes on the “F' pegs at the second and third positions on the
“A", Flip-Flop. Now put the elevator on the first floor and push the second floor but-
ton l. The elevator moves to the second floor just as before.

Cycle the clock again and nothing happens. Now the elevator is operating more efficiently.
1
Set the "“C"" Flip-Flop to zero § and cycle the Clock — now you go back down.

What would you do with the first and fourth positions to keep them from actuating when
you have 172

Try it,

Now DIGI-COMP is COMPUTING - because it COMPARES where it wants to go with
where it already is, and decides whether to go up, down, or stay still.

If you wish to become ewven more scphisticated, we can use DIGI-COMP to open the
elevator door. To see how to do this, we must first Jetermine when the door should be
opened. That is, when you are where you want to be 4 jor 9. So if we use Logic Rod 5 to
open the door on the second floor, set DIGIF-COMP to ¢ and look at the T and F pegs in

1
the number five pesition, Notice that if we program it by putting logic tubes as follows:

5
TF
a |
8 i
R -

The rod is free to move in and thus open the door.
This is a good illustration of how the logic rod operates as an AND gate.

Amust=1

AND
B must =0
AND
Cmust=1

17

For the door to be opened.

Now you should be able to figure out how to make the sixth Logic Rod (AND GATE)
open the door on the first floor.

If you have trouble, turn to Page 48 for the complete program. Make sure vou understand
it hefore proceeding to the next Experiment.

18

EXPERIMENT & — HO-HUM (Logical Riddle)

In the Pacific Ocean there are two neighboring islands which few white men have seen.
If you were to take a trip and visit these islands you would find the natives of izland HO
always tell the truth while the natives of island HUM always tell falsehoods. As an out-
sider you cannot tell to which island any of the natives belong. When you wvisit the
islands you see @& group of three natives standing around, and out of curiosity ask the
first to which island he belongs.

FIRST NATIVE'S ANSWER: “BZYTPL."’

Since he doesn’t speak English, vou cannot understand his answer. You ask his two
friends: ““What did he say?’*

SECOND NATIVE ANSWERS: He say he belong *‘HUM®'.
THIRD NATIVE ANSWERS: ‘“No, first man say he belong HO."'
Riddle: To which island does the third native belong?
To operate DIGI-COMP:
STEP 1 — Put Front Panel Card III into the slots on the Front Panel,
STEP 2 — Make sure clock is all the way out (to the right).
STEP 3 — Program DIGIF-COMP according to the coding sheet,

(You may find it helpful to move some of the logic rods to the INACTIVE POSITION
{turn to the left) when putting on legic tubes.)

1 2 a 4 5 5
T . FlA il z T -3 T F__d T -] __:I‘_ Fl &
A = |" 1‘ | L I L. L
B | __{u::u*. D = I L o
Fo : c " .’ __!._ = c I =

STEP 4 — Make sure logic rods 1, 4, 5 and 6 are in the ACTIVE POSI-
TION (turn to the right).

STEP 5 — With the Manual Input Tabs enter the answers of the second
and third natives into the flip-flops indicated by the Front

Panel Card. Tf the answer was HO enter a ‘1%, if HUM
enter {7,

STEP 6 — Cycle the clock ONCE.

The answer in the Read-Out will be *1"° if the third native is
from HO and 0" if he is from HUM.

15

Try entering other answers for the 2nd and 3rd Natives. DIGI-COMP will always cor-
rectly tell you from where the third native comes.

To program a riddle of this sort, you must Ffirst fully understand the problem yourself,
To do this you must break the problem down to its most simple form — this is called
synthesizing a problem, There are four combinations of answers that yvou could get from
the second and third Natives,

1.

First, if the second Native answers HO and the third answers HUM, vou know one
of them is lying. But how do you determine which it is? To find the answer to this
problem, you must remember the question you put to the natives, It was ““which
Island did he say he belonged to,” not “‘which island did he actwally belong to."
And here lies the solution to the problem, If the first native was from HO, he would
tell the truth and say he was from HO. If he was from HUM, he would lie and still
say he was from HO. Therefore, you know that the Native who said he said he was
from HUM was lying. Thus, in the first case, the third Native was from HUM.

If the second Mative had answered HUM and the third answered HO, then the second
was lying and the third was from HO.

. If they both had answered HUM, then they both lied so thet the third was from HUM.

If they both had answered HO, then they both told the truth so the third Native was
from HO,

To program this, now that we understand the problem:

let A = an answer of HO from the second Native
B = an answer of HO from the third Native
then A = an answer of HUM from the second Native

E = an answer of HUM from the third Native

Since the answer to the riddle should appear in the “‘C" Flip-Flop the above four state-
ments can be translated into equations as follows:

1.

The first set of answers were:
Second Native: HO (enter a 1 in Flip-Flap A)

Third Native: HUM (eater a 0 in Flip-Flop B)

Since the third Native lied, we want the answer in C to be 0, when A =1 and B = 0.
So the first equation is;

2.

Reset C = A B

The second set of answers were:;

20

Second Native: HUM (enter a 0 in Flip-Flop A)
Third Native: HO (enter a 1 in Flip-Flop B)

Since the third Native told the truth, we want the answer in C te be 1, when A =0 and
B = 1. So the second equation is:

SetC=A-B
3. The third set of answers were:
Second Native: HUM (enter a 0 in Flip-Flop A)
Third Native: HUM (enter a 0 in Flip-Flop B)

Since the third Native lied, we want the answer in C to be 0, when A=0 and B = 0.

So the third equation is; % :

-

Reset C=A:B A/,

4, The fourth set of answers were; f
Second Native: HO (enter a 1 in Flip-Flop A}M ,ﬂfiy ﬂ L-,-‘"
. , - ! ﬂ {(_}5 “*-)
Third Native: HO (enter a 1 in Flip-Flop B)
Since the Third Mative told the truth, we want the answer in C to be 1, when A = 1 and
B =1, 8o the fourth equation is:
SetC=A-B
Mow, let's bring these four eguations together and we're ready to program.
¥ 2 2 4 - &
L. Reset C= A B— T el v ElE vorls TvR|lW ToERfs Y &
' |
2, SetC = I B— A |-| f '1 r] L L 5
B L DU DU L L L
3. ResetC=A B é i i,_ 1 ;i;; A e
4, SetC = A E‘l

Notice how the equations lead directly to the program, just as in the previous experiments.

In the first one, for instance, A means *‘put a logic tube on the ‘T’ peg of Flip-Flop A™}
B means “put & logic tube on the ‘F' peg of Flip-Flop B'" in Position 1. EASY, ISN'T
IT? The same [ollows for equations 2, 3 and 4,

You might wonder why we picked “‘and gates™ 1, 4, 5 and 6. There is no special reason;
you could program on any of the ““and gates’ as long as “‘and gates' 2, 4 and 6 are used
for setting and 1, 3 and 5 are used for resetting,

21

EXPERIMENT 10 - BINARY COUNTER

Binary counters are used in nearly all digital computers and automatic devices. There
are many uses for these counters.

They may count events or things. For example, a binary counter is used to count time so
a computer will know when it has to do different operations. Binary counters can be used

to automatically count candy bars being sent to the grocery store,

You have already counted down to “‘blast off"’ a space ship. Now see if you can count
up from 0 to 7 in binary. Tty writing the count from 000 to 111.

To check yourself, use DIGI-COMP. Program DIGI-COMP as in the coding sheet.

1 2 <] 4 5 &
T FiA T F Z T Fl 3 T F| & T F| & T F:| &
1_: ¢ luje L L L.i L:_

0 [Lic L LI
L1 1] e life

To operate DIGI-COMP:
STEPF 1 — Use Front Panel Card [.
STEP 2 — Make sure clock is out. Enter *0"s into all 3 flip-flops.

STEP 3 — Cycle the clock slowly a number of times. Look at the Read-
Out and watch DIGI-COMP count!

Te program the Binary Counter, you would start with what is called a Truth Table.
Truth Tables or other orderly arrays are always used by Computer Programmers. A Truth
Table is just a display of rules that govem a particular problem. For the Binary Counter
the Truth Table is just the Binary numbers from 0 to 7 written in arder.

BINARY NUMBER TRUTH TABLE
Decimal No,] 1 z 3 4 5 6 7]
Flip-Flop A] 1] I 0 1 1] 1 1]
Flip-Flop B]] 1 1]] 1 1 o
Flip-Flop C 0 0 i 0 1 1 1 1 0

Now look at the Truth Table and see when you want to change the setting of each of the
Flip-Flops. For example;

22

Flip-Flop A should be changed from 0 to 1 when

A=Dand BE=0andC=20

or

A=Dand B=land C=10
or

A=Dand B=0and C=1
or

A=DandB=1and C=1

These word statements can be shortened by writing them in the form of Boolean Algebra.
To review the rules for this once more, remember that:

1. A stands for “the A flip-flop in the 0 position’,
2. A stands for ““the A flip-flop in the 1 position',
3. Replace the word "*and'’ by & multiplication sign { -)
4. Replace the ward **ar’’ by an addition sign (+)
Then the founr above statements for changing (setting) flip-flop A from 0 to 1 become —
SetA=A-B-C+A-B.C+A-B-C+A-B.-C

See, it wasn't so hard!

Next, we’ll write the statements for resetting Flip-Flop A from 1 to 0.

A=-zland B=0and C =0
or
A=landB=1landC=10
or
A=landB=0andC=1
ar
A=-land B=1land C =1

Rewriting these equations in Boolean form as we did before:
ResetA=A-B-C+A-B-C+A-B.C+A-B.C
To reset B from 1 to 0

A

land B=1and C
or

land B=1and C

1}
o

A

i
p—

Writing these eguations in Boolean form gives:
Reset B=A-B - C+A-B-C

23

Now, we do the same thing for Setting B = 1 and get:
SetB=A -B-C+A.B-C
And similarly:
Reset C=A-B-C
SetC=A-B-C

Now, if we bring these six equations for setting and resetting all of the flip-flops to-
gether, we get:

(1) Reset A=A-B-T+A-B-C+A.B.C+A .B.C

(2) SetA=A.

il

-C+A-B-C+A:-B-C+A.B-C
(3) Reset B=A-B-C+A:-EB.C

(4) SetB=A-B-C+A-B:C
(5YReget C=A .B-C

f6) SetC=A.B.C

These are the six equations that together determine how DIGI-COMP is to be programmed.
In these six equations, however, there are fourteen ‘““AND'’ functions (count them).
But on DIGI-COMP there are only 6 ““And Gates''. Fortunately, however, we can reduce
these equations by “‘factoring’’ out common terms in equation (1). (See Page 6.)
Reset A=A (B-C+B.C+B.C+B.0C)

=A[(B+B)C +(B+B)C]

=A[1(€+0C1]

= A (1)

=A

Reset A = A
Similarly, we find from equation 2, that:
SetA=A(B-C+B-C+B.-C+B-0)

Set A = A by the same reasoning.

24

Mow, let's look at the B flip-flop — it's easier.
ResetB=A-B-T+A-B-C
=A-B({C+0)

=A-B(D

it
>
m

SetB=A-B-CT+A-B-C

We're almost done!

Let's look at the six equations now. Compare them to the Coding Sheet and you'll see
how it all fits together. If you're not absolutely sure how we did it, you'd better go back
over the problem again. Remember, when there is no — over the letter, the logic tube
goes on the "T'" peg of the Flip-Flop, and when there is a — it goes on the “F"" peg.

1. Hlas-lz-t.ﬂ:n"llJ T+F :
2. Set A=A Z T E
3. Reset B=A B 5

4. SetB=AB— | .

5. ResetC=ABC

6. SetC=AEE—l—i

25

EXPERIMENT 8 — "'GUESS THE NUMBER"" (A Logical Riddle)

Here is a logical riddle to test your reasoning powers, Have a friend choose any number
between 0 and 7, (0, 1, 2, 3, 4, 5, 6, 7). You are to find the number he chose from his
answers to three questions, He will answer Yes or No to each question.

QUESTION 1: Is the number cven?
QUESTION 2: Is the number 0, 1, 2 or 3?7
QUESTION 3: Add 10 (ten) to the number and divide the result by 6; is
the remainder 0, 1, 2 or 3? (For example if the number is 5, then 5 + 10 =
15 and 15 divided by 6 is 2 plus a remainder of 3. The answer to the
statement would be Yes. If the number is 7, then 7 4 10 = 17 and 17
divided by 6 iz 2 plus a remainder of 5. The answer would be No.)

Now try it
STEP 1 — Put Front Panel Card IV in place.

STEP 2 — Program DIGI-COMP sccording to the coding sheet.

1 2

T Fl1 T F

a L = L
B

STEP 3 — Make sure clock is all the way out (to the right).

STEP 4 — With the Manual Input Tab enter the answers to the three ques-
tions into the flip-flop indicated by the Front Panel. Enter a
Y17 if the answer was YES, Enter a “0" if the answer was NO.

STEP 5 — Cycle the clock ONCE,

The Read-Out will have the number vour friend chose in the
Binary System.

If you played Guess the Number you no doubt tried to beat DIGI-COMP. But unless you're
pretty quick, you couldn't keep up. Here is where you will learn & preat lesson about
computers. Even though DIGI-COMP PROBABLY Guessed the Number much faster than
you did, in a few minutes you'll be able to tell DIGI-COMP how to do it

Let us begin the solution by answering the three questions for each number from 0 to 7,
and, again putting them in a Truth Table,

For instance, for a secret number of 0:
26

QUESTION 1: Yes, it is even.
QUESTION 2: Yes, it is less than 4.
QUESTION 3: Mo, the remainder is not less than 4.

Mow we will fill out the Truth Table for all 8 secret numbers substituting 1 for Yes and
0 for No.

SECRET NUMBER TRUTH TAEBLE

Secretl Number @ (j’) /’ @) {’{) {—’g E‘“)

Flip-Flep A A|BIC|A|B|C|A|B|C|A|B|C|A|B|C|A|B|C|A|B|C

m
@

Answers to

Questions 11|01 joj1 |1 (1|2 j1{1|oj1jo0j0|1]|1l|Q|@|O|O|0

Secret Number
i.nEinaryFnrmﬂU-[l]ll]ﬂﬂlﬂllﬂﬂﬂllﬂlDlllll

Now, we will do the same thing we did in the Binary Counter. We look at a particular
Flip-Flop and see when it is necessary to change it. First, for Flip-Flop A, we can see
from the Table that it is necessary to reset it from 1 to 0 whenever the secret number is
0, 2, 4 or 6, That iz, when the answers to the questions are;

A=1and B=1and C =0 (Secrel No, =)
ot

A=-land B=1and C =1 (Secret No. = 2)
at

A=1land B=0andC =1 (Secret No. = 4)
ar

A=1and B=0and C =0 (Secret No. = &)

MNow, changing this, the same as before, into Beoolean Algebraic Equations, gives:
ResetA=ABC+ABC+ABC+ABC
Again we will factor the equation, pulling cut the common factor A,
Reset AcA(BC+BC+BC+B D
And, just a= in the binaty counter, since B and C can have any value,
Reset A = A

Mext, locking at the Truth Table, we want to Set A = 1, when the secret number is 1, 3, 5
or 7; that is when;

A=0and B=1and C =0 (Sscret No. = 1}
or

A=0and B=1and C =1 (Secret No. = 3)
27

A =0 and B:ﬂa:dTC=1{Secr&tH0.:5)
or
A=0and B=0and C=0(Secret No. = 7)
Changing this to Boolean Algebra gives:
Set A=ABC+ABC+ABC+ABC
Set A=A(BC+BC+EBC+BD)
Set A=A
Now, we shall look back at the truth table and zee when B iz changed from 1 to 0.
Reset B=ABC+ABC (ForOor 1)
Reset B=BC (A + &)

Reset B=BC

Similarly:

Set B=ABC+ABC (For6or7)
Set B=BC(A+A)
Set B=BC

Next, to find when C changes:
Rezset C=ABC+ABC (For 2 or 3)
Reset C=BC (A + A)
Reset C=B C

And for the last one =

To program DIGI-COMP, all we have to do is put logic plugs on the proper pegs, and
we've built 2 machine that can cutsmart almost anyone.

28

e S e e

The six equations are:

1. Reset A = A —— 1 : = :
2, 86t A = A—m— i T Elz T F|3 TrF-l- rels v oFls
3, Reset B=BC A bl e gbie :
4, Set B= B C— e e LS i Pl

(= i<
5 Reset C=B C |

E.SetC=ﬁE-] =iy ? T T T

You can compare these six equations to the Coding Sheet just as before.

29

EXPERIMENT 12 — BINARY NUMBER COMPARATOR

All electronic digital computers have the capability to determine whether two binary
numbers are equal or not equal. On the basis of the answer (whether they are equal or
not equal) the computer can make decisions,

It is this ability of the digitel computer to decide what it will do next, based on the
comparison of twe binary numbers which makes people say the computer “‘thinks’, The

computer does not “‘think’ since someone programmed it for each choice it could make,

DIGI-COMP can be programmed to compare two binary numbers and determine if they are
equal or not egual,

To perform this experiment, program DIGI-COMP as in the coding sheet.

uellly

To operate DIGI-COMP:
STEP 1 — Use Front Panel Card VI.
STEP 2 — Meke sure clock is out. Move the C flip-flop to *'1".

STEP 3 — Enter the first bits of the two numbers into flip-flops A and B
{see example below),

STEF 4 — Cycle the clock.

If the two binary bits are equal, C will have a "*1"" in its Read-
Out. If they are not egual, C will have a '*0" in its Read-Out.
Stop when vou see the first **0°',

Repeat Steps 3 and 4 for the other bits of the two binary num-
bers, If at any time C s 0", then the two numbers are not
equal.

FOR EXAMPLE: compare the two binary numbers

A=10110—=—— enter these bits in A
and BE=11110-¢—— enter these bits in B

L enter these two bits lst

enter these two bits 2nd
enter these two bits 3rd and so on.

a0

You may think this is a very simple minded thing to do — “all yor have to do is look at
the numbers, and you will see they are different,’”’ But you have forgotten something —
computers are only machines — they can’t look!

To emphasize how powerful this operation is — because a computer can compare, it
knows when it has the correct answer, even though it may not know how to get it, This
is called an Itterative Process which is used very often in computers. To give vou an
idea how it works, if you give a computer a group of preset conditions, it will guess an
answer and then test it on the conditions. Then it will guess another number which is
more correct, and so on till it has the exact answer.

To program the Comparator, we must first decide when to "'set’’ AND WHEN TO RESET
the C Flip-Flop.

We want to SET C when A AND B are the same, We want to RESET C when A AND B
are different. But also we want to keep C = 0 if ANY two bits differ,

O.K., let's write the equations,
We want to reset C if A and B are different, that is:
when A=1ANDB=10

OR

A=0ANDB=1

then, in equation form, this would ba:

Reset C=AB+AB
Alzo, we want to Set C if A and B are the same, that is

when A=1ANDB=1

OR
A=DANDB=0

Then in equation form, this would be-

SetC=AB+AB
This is fine for a start, but we've forgotten something,
If there is a difference between the two numbers being compared, we want to Reset C to
0" and LEAVE IT THERE. To satisfy this condition we shall put a logic tube on the
T peg of the C Flip-Flop in both positions 1 and 2. Now if the C Flip-Flop is ever
"0 it will remain there, for the duration of the number being compared, because the
setting Logic Rods (1 & 2) will be blocked by these two Logic Tubes.

Thus the entire equation becomes:

SetC=ABC+ABC

31

And the Program follows directly from these two equations.

Reset C=AB+AB

SetC=ABC+ABC

1 F 3 a
T FL 1 T F| 2 T Fl 3 T F| a
| 4
A L o L [L
B L L L L
c L Lo = I =

Here, as usual, we arbitrarily chose to program Reset C on Logic Rods 3 & 4, The only
thing that matters is that since this is a Reset function, the Clock Rod which is acti-
vated by the Double Slider (OR GATE) is ODD (Position 1, 3, or 5).

It should be clear now, if not before, where the OR GATE fits into the picture. In this
case, the equations could not be simplified to remove the OR from the functions.

32

EXPERIMENT 13 - BINARY ADDER

You have learned how to add binary numbers in the chapter on ‘“The Language of Com-
puters''. Now you will see how a digital computer adds two binary numbers,

Remember, in addition, there can be a ““carry’ from the previous column.

FOR EXAMPLE: carry 11
110
+ 011

1001

The adder iz a basic unit in all digital computers. Your DIGI-COMP can be programmed
to operate as an adder which will work exactly as an adder in large electronic digital
computers works.

Program DIGI-COMP ag in the coding sheet,

1 2 3 4 5 &
[|
B i 1
TFI_TFE T Fl|3 T F|a TF |8 T F|&
B L [LC L c y L L
| L L y L L|
13 L L L L - =

To operate DIGI-COMP:
STEP 1 — Use Front Panel Card VII
STEP 2 — Make sure clock is out, Manually enter the first two binary
bits to be added into the A and B flip-flops (see example).
Make sure the C flip-flop is 0",
STEP 3 — Cycle the clack ONCE,

A will remember the sum and C will remember the carry.

STEP 4 — Copy the Read-Out of A onto & sheet of paper. This is the
first bit of your answer.

STEF 5 — Enter the second bit of the two numbers onto A and B. DO NOT
TOUCH C (C remembers the carry from the previous step).

STEP & — Cycle the clock ONCE.

Repeat Steps 4, 5 and 6 until you have added the two numbers.
Remember to copy the carry after the last operation.

a3

To program the Binary Adder: First make the usual Truth Table with all possible values
for A, B and C (the carry), Add them up and see what should go into the A and C Flip-
Flops when DIGI-COMP is clocked.

A plus B plus € = Ans. plus Carry

0 plus O plus 0 = 0 plas]
0 plus 0 plus 1 =1 plus a
0 plus 1 plus 0= 1 plug o
1 plus 0 plus 0 = 1 plus 0
1 plus D plus 1 =0 plus 1
1 plus 1 plus 0 = D plus 1
0 plus 1 plus 1 = 0 plus 1

[y

1 plus 1 plus 1 = 1 plus
Mow, look at the answer column and see when the A plane should be Set to 1.

You want to Set A when the answer is 1, or when:

A=0and B=Dand C=1

ar

A=Dand B=land C =0
or

AzlandB=0gnd C=0
ar

Azland B=1land C =1
or putting this into Boolean Algebra:
SetA=A.-B:C+A.-B-C+A'B.CT+A-B-C
To reduce this equation we shall use a new ”trjcl:”_WhiEh is simple but not obvious, If
you look at the last two terms in the equation (A « B - C + A . B . Q) the value of A"

is 1, therefore since the A Flip-Flop must be in the 1 position for these to be activated
there is no use in setting it to 1, and the equation reduces to:

SetA=A.B.C+A.B. T (which is programmed on the first two And Gates.)
Similarly, if you deo the work yourself, and you should be able to, you will find that:

ResetA=A -B.C+A.B.C
SstC=A-B
Reset C=A-B

34

If you have trouble, see Page 48 for the complete solution. Thus, the four equations are:
{(1)SetA=A-B.C+A.B.C
(D Reset A=A-B.C+A.-B-T
(3)8tC=A-B
(4)Reset C=A - B

The Coding Sheet follows directly from these equations,

Equation (2) Equation (1) Equation (4} Equation (3)
. x — 3 <
1 2 3 L 5 &
a4 i
I 1
L S i o T F]3 T.F14 T F|5 T Fls
A L lLle L o | L L
B L __Ix = L Ik - 2 O
o L L L c

35

EXPERIMENT 14 — BINARY SUBTRACTOR
Binary subtraction is as simple as binery addition.
The rules for binary subtraction are;

RULEL:1-1=0

RULE 2:1-0=1
RULE 3: 0 -1 = 1 with & *"1"" borrow. :
RULE4: 0-0=0

RULE 5: 1 -1 and a *“1'" borrew = 1 with a *“1" borrow,
RULE 6: 1 - 0and a ““1" borrow =0

RULE 7: 0 - L'and g "*1"" borrow = 0 with a **1"" borrow.
RULE 8: 0 -0 and a ““1”’ borrow = 1 with a *‘1"" borrow.

The program for & binary subtractor is given in the coding sheet. Compare this coding
sheet with the one for the binary adder. Notice the only difference is at Position 5 and 6.

1 2 3 a 5 5
T “F§1 T Fl2 T F §A T Fl 4 TFJE- T F|&
A | Lle | e L L L
L I.__ L L L L
c = L L L Cc i

To operate DIGI-COMP:

STEP 1 — Use Front Panel Card VIII.

STEP 2 — Make sure clock is out. Make sure C is 0",

STEP 3 — Enter the first bit of the subtrabend (1st No.) in the top flip-
flop and the first bit of the subtracior (2nd No.) in the middle
flip-flop.

STEP 4 — Cycle the clock ONCE.

STEP 5 — Copy the RESULT {in top flip-flop) on a piece of paper.

STEP b - Enter the second bits of the two numbers. DO NOT TOUCH C
as it contains the “‘borrow’’ from the previous step.

36

STEP 7 — Cycle the clock ONCE. Repeat Steps 5, 6 and 7 until the two
numbers are subtracted.

REMEMBER, the number subtracted must be less than, or equal to the number from which
it is being subtracted.

To program a Binary Subtractor we use the same technique as in the Binary Adder,
First, we will translate the rules into a Truth Table,

A minus B minus C = Answer € Borrow

1 minus 1 minug 0=0 0
1 minus 0 minus 0 =1 0
0 minus 1 minus 0 = 1 1
0 minus 0 minus 0 =0 0
1 minus 1 minus 1 =1 1
1 minus O minus 1 =0 o
0 minus 1 minus 1 =0 1
0 minus 0 minus 1 =1 1

Now look &t the answer column and see when the A plane should be Set to 1.

You want to Set A when the answer is 1, or when:

A=zlandB=0and C=0
ar
A=0andB=1and C=0
or
A=landB=land C=1
or
A=0andB=0andC=1
Now, putting this into Booclean Algebra —
SetA-ABC+ABC+ABC+ABC
Again, since A is already Set to 1 the first and third terms can be neglected,
SetA=ABC+ABC
Try to work out the rest of the equations on your own. They are:

(I)SetA=ABC+ABC

(Z)Reset A=ABC+ABC
37

(3) Reset C = A B
(4)SetC=AB

If you have trouble, tumn to Page 49 for the complete solution. Agein, the equations
correspond directly to the Coding Sheet.

E &
TFEIE T Fls&
i L L
El_ L} L L = L [
[= !..l L L o c

In most electronic computers, Binary Subtraction is not performed in the direet manner
which is wsed by DIGI-COMP.

If a larger number were to be subtracted frem a smaller number the result would be
negative. Since most computers are not equipped to handle negative numbers, subtrac-
tion is performed by what is called 3 Complement and Add operation.

The Complement of a number, often more particularly called the 2's Complement, may be
obtained from the given number by first changing every ““0" bit to a “1' and vice-
versa, (this is called the 1's Complement) then adding cne to the resulting number.
Thus, the 1's Complement of (0010110} is (1101001) and the 2's complement is {1101001)
+ 1 = (1101010),

To explain by example how the entire subtraction process goes, suppose we want to
subtract 22 = (B010110) from 39 = (0100111). If DIGI-COMPE were to do the problem with
its direct subtraction technique, it would subtract one bit at a time as follows:

Subtrshend 0100111 32
Subtractor -0010110 -22

Difference 10001 17

Mow, if an electronic computer were to do the same problem it would first find the 2's
complement of 39 which is (1011001), add it te 22, and take the 2's complement of
the sum.

2’s Complement of Subtrahend 1011001
Subtractor 0010110

SUM 1101111

I's Complement of Sum 0010000
2's Complement of Sum 10001 = 17

As you can see, this procedure is quite laborious by hand, but with high speed com-
puters it proves to be worthwhile.

38

EXPERIMENT 15 = BINARY MULTIPLIER

Binary multiplication is carried out in @ way similar to decimal multiplication. The
multiplication table is:

l1x0=0 Dixdl=0
Gx0=0 l1xl=1

This is even simpler than binary addition!

To multiply in the binary system you multiply by each bit of the multiplier and add. This
is the same as in the decimal system.

For example; In binary: In decimal:

1101 13
#1101 x. 13
1101 35

0ooo

1101 13
1101

igia01001 189

DIGI-COMP can be used to multiply two binary numbers according to the binary multi-
plication table.

Program DIGI-COMP as in the coding sheet.

1 2 3 1 5 s
T =0 T FEz T Fl3a T F| a4 T F| 8 T Fl &
A | II L V- @
i | = i LA
B gu auy IL 9 rr} L
; , -
c ‘. | | 2 | c

To operate DIGI-COMP:
STEP 1 — Use Front Panel Card IX,

STEP 2 — Enter the first multiplicand bit into the top and the first multi-
plier bit into the middle flip-flop

STEP 3 — Cycle the clock ONCE, € will hold the result — copy it on
paper,

STEP 4 = Enter additional bits of the multiplicand and cycle the clock,
copying the answer each time (as in the example).

35

STEP 5 — Enter the second bit of the multiplier and repeat Step 4 for all
bits of the multiplicand. Copy the answer as in Step 4 but
shifted to the left one bit (see example).

STEP 6 — Repeat Step 5 for all bits of the multiplier.

You may use DIGI-COMP to add the partial products to get the final result {use the
Binary Adder Experiment).

After deriving the Coding Sheets for the adder and subtractor, this problem should seem
much easier. To begin, as usual, we shall write the binary equations for all possible
combinations of the product of A and B,

Atimes B=C
I times 0=0
0 times 0 =0
0times 1 =10
1 times 1 =1

These equations may now be put in the form of a Truth Table as follows:

Multiplicand Multiplier Result Equation
A B c WBE=0)
iy B ¢ (AB-0)
A B c AB=0
A B C (AB=0)

Now to write the Boolean equations for the above Table.

C=A-EB

C

A-BE+A.BE+A-B

To reduce the equation for C, lock at the Venn diagrams for equations [, g and h in
Table 1, Page 7. Inthe Vean Diagram below, shade in the Union of these three functions.

Now, compare your Diagram with the others in Table 1. If you shaded it in properly, it
should be the same as the Diagram for Equation (i), Therefore:

-B+A“B=A+8B

=l

A-B+
The Boolean Equations

are then: [J = = = = l e
E

C=4. fF_L1 TFlz TFls TrEls T Els TEls
A [|' L | i '
- 4 1
C=A+B B au qut L tLur L

= \ Ve l'l l -
{ 4

In the multiplication of two decimal numbets, if you recall the true meaning, the opers-
tion was defined as a multiple addition problem. For instance, to multiply 23 x 45,
actually means 45 + 45 + 45 + 10 (45 + 45). It could be written as follows:

450
450

1035

]—— Shift 1 place and add 45 - 2 times

If you do a multiplication problem with this technigue you don’t have to remember your
multiplication table, all you have to know how to do is add,

Electronic computers usually use this approach to multiplication problems, By deing so,
they don’t have to memorize any multiplication tables either. Thus, most electronic com-
puters do not multiply directly, as DIGI-COMP does, but use the add and shift approach
instead,

Since the only numerals used in the binary system are 1 and 0, the add and shift tech-
nigue is much more expedient than it was for the decimal system. If there is a 1 in the
multiplier, the multiplicand is added once and shifted. ¥f there is a 0 in the multiplier,
the multiplicand is just shifted with no addition necessary.

[}

As an example of the Add and Shift operation, suppose we multiply (10010) times (1101},

10010
1101

10010
10010
10010

1110110

Az in the binary subtracter, electronic computers could do the operation directly, but by
using the Complement and Add for subtraction and Shift and Add for multiplication, the
computer needs only to add to accomplish all three operations.

41

EXPERIMENT 11 — GAME OF NIM

NIM, an ancient game dver 2,000 years old, was played by the wise men of the east, Two
wise men =at at a table, each one having a pile of stones by his side. The first wise
man places either one or two stones in the center of the table. The second wise man
adds 1 or 2 of his stones to the stones in the ceater of the table. Each player takes a
turn until there are 7 stenes in the pile in the center of the table. The wise man who
added the last stones to make the pile egual to 7 is the smartest of all wise men.

DIGI-COMP claims to be very wise. Can you beat DIGI-COMP? Either you, or the com-

puter, may go first.

To play NIM:

STEP 1 — Place Front Panel Card [in position.

STEP 2 — Program DIGI-COMP according to the coding sheet.

1 2 3 5 &
T FQ % T Fj 2 T -3 T 3 T -FIE T F|&
a L Ljc |_‘~‘ i
] L L g u e L
TS e | -
c i b ;|_.,_] i L e

STEP 3 — Make sure clock is all the way out.

STEP 4 — Make sure all logic rods are turned to the right.

STEP 5 — Make sure all flip-flops are all the way out (o the right).

YOU OR DIGI-COMP MAY GO FIRST.

it you go first:

STEP & — Add either 1 or 2
to the number in the Read
Out £ .

If you want to add 1, move
the flip-flops with the Manua]
Input Tabs until you see
which is 1, in the Read QOut.
I you want to add 2, move
the flip-flops until you see 1
which is 2, in the Read Out,

']

STEP 7 -
It is now DIGI-COMP'S
turn. Cycle the cleck ONCE,

42

If the computer goes first:

STEP 6 —
Cyecle the clock ONCE,

STEP 7 —

It is yvour turn, Use the trans-
lation chart to help you trans-
late the numbers in the Read
Out to decimal, Add 1 or 2 to
thiza number and translate
back to binary. Enter the
binary number by moving the
flip-flops with the Manual
Input Tabs until you see the
number in the Read Out

YOU MUST ADD EITHER ! OR 2 TO THE NUMBER IN THE READ OUT ON YOUR TURN.

STEP 8 — Repeat Steps 6 and 7 (taking tums with the computer) until you see E in the
Read Out. This is 7.

THE FIRST TO MAKE THE PILE EQUAL TO 7 WINS!

Read the problem carefully, program DIGI-COMP and play the game a few times to
familiarize vourself with ir,

Now, as always, we have to analyze the conditions of the problem before we can program
it. Each new turn brings s new decizion to be made. We must figure out what would hap-
pen under all circumstances and then decide the ‘*best’ routine for DIGI-COMP te follow.
We say “‘best” because, ebvisusly many programs would work, but only cne would make
DIGI-COMP win most of the time.

Our tool for analyzing NIM is called a “FLOW CHART®. These are used daily by pro-
grammers to snalyze the problems in piant Electronic Computers. We will make the Flow

Chart for the case that DIGI-COMP goes first,

The Flow Chart works just like a “‘family tree’, You start at the top and follow down
each of the lines to a conclusion.

There are many different symbols used, and they depend only on personal preference,
The symbols most used are explained below.

1. Put an oval around input and output information (start and conclusion).

2. Put a diamend where thers i a decigion to be made.

3. Put a circle around arithmetic opetations (add 1 or add 2).

4. The arrow heads determine the directicn of flow of the information.

5. The numbers outside the circles indicate the values at those points.
Go thru the Flow Chart on the following page carefully from start to the various con-
clusions. As you will scon gee there are 21 different routines that could be followed if
DIGI-COMP goes first. Along the way, during different games, DIGI-COMP must be able

to make some 40 different decisions. As you will see, these will be based on the proba-
bilities of winning.

43

LHYHD MOT14

L1531 5309 JW0D 1010

N

Now that we've finished this momentus task we must decide the ‘‘best’ routine for
DIGI-COMP to follow. There are 21 possible sequences, so we will look at each deci-
sion separately,

To make these decisions we shall look at the probability of winning for each choice, To
start with, if DIGI-COMP goes first, it can either add one or two. If it adds two, it will
win 4 out of B times (or 50% of the time). If it adds one, if will win 7 out of 13 times
(or about 54% of the time), So it's better to add 1 the first time.

Next, it's the Player’s turn and he can add either 1 or 2. If the Player adds 1, DIGI-COMP
would win 2 out of 5 times if it added 1, and 2 out of 3 times if it added 2. So the next
move for the computer to make is to add 2. Now there are 4 rocks on the pile. So if the
Player adds 2 then DIGI-COMP will add 1. And if the Player adds 1 DIGI-COMP will add
2. In either case DIGI-COMP wins.

Now let's go back and see what should happen if the Player added 2 rocks to the pile on
his first turn. If DIGI-COMP added 2 it would win half the time, if it added 1 it would
win 2 out of 3 times. So DIGI-COMP should add 1 rock again making the pile 4 and put-
ting the Player in the same predicament he was in before,

Now, let’s make the Flow Diapram over again, just showing the proper decisions that
DIGI-COMP should make.

@ & @

You can see that by calculsting the probabilities (playing the odds) that we have made
it impossible for a Player to win if DIGI-COMP starts first,

The next step is to make a Truth Table:

If the Read-Out is; 0 1 2 3 q 5 3] 7

Then DIGI-COMP

should be set to: 1 s * =) ! 7)

To complete the Truth Table, we have to go through the same reasoning for the Player
going first.

You should be able to do that, just retrace the =ame steps we took before and calculate
the probabilities of DIGI-COMP winning,

The Truth Table will look like this:

If the Read-0ut is: 0 1 2 i 4 5 f

bt |

Then DIGI-COMP
should be set to:

45

There is a question mark under 4 because there is no clear-cut path to take. If DIGI-
COMP gets in this predicament it will LOSE 2 out of 3 times. The next best thing to do
is to add one rock and hope the Player doesn't notice. Well, that isn’t so terrible. It
wouldn't be any fun if DIGI-COMP always won!

Now, we have the hard part all done; all we have left to do is program DIGI-COMP.

Teo start we will combine the two Truth Tables and write them in binary form as in the
other programs.

If Read-Out A 0 1] 1 0 i 1] 1
is: B 0 0 1 1 0 0 1

C 0 0 0] 1 i 1 1
Then it A 1 1 0 0 1 1 1
should be B 0 1] 0 0 1 1 1
set to: C 0 0 1 1 1 1 1 i

=ABCT+A C (Logic Rods 1 and 2)
Reset A = A B C (Logic Rod 3)
SetB=ABC+ABC
=AB{C+O)

= A B (Logic Rod 4)

Reset B=-ABC+ABC :
=BC(A+A)
= B C (Logic Rod 5)
SetC=ABC:ARBT
=BC(A+A)

B C {Logic Rod 6)

46 |

S A

As usual, the Coding Sheet follows directly from the equations. It took a while to
organize the problem, but if you do it step by step, it really isn’t so difficult. Let us
emphasize again, that these are exactly the steps you would take if you were program-
ming the world’s largest electronic digital computer. First, analyze the problem and put
, into some kind of a form that will lead you directly to the key information. Mext, trans-
[late the information into mathematical form and code it in such a way that your particular
computer will understand it.

Now you should be prepared to invent your own problems and programs to solve them,
E.5.R., Inc., will be making more publications from time to time and if your program is

| printed, and you were the first to submit it, we will send yvou a check for $10.00 and
print your name in our publication,

f/-' :
u,(_ % AT :_{[7,%1‘..‘ L .l,_. Lﬁt-_.:, Cf-ff-
7

ANSWERS TO QUESTIONS

EXPERIMENT 3

The complete program would be:

1 3 a4 5 &
1 _f L] T F| 2 T F13 T F| & i} & T F E_
A o e T L ’t_
.L c Ll L |_:
= i__ L .] v |L

EXPERIMENT 7

The Boclean Equations are:

(Position 2) A

i
=]
s
rl

(Position3) B=zABC

It
=3
ml
&

(Posgition 4) B

{Position 6) C

in
I
#4]
(]

EXPERIMENT 13
We want to Reset A when the answer is 0, that is:

A=0Oand B=Tand C =0

or

A=land B=Oand C=1
oF

A=-land B=landC=1
or

A=DandB=1landC=1

Putting these in equation form would give:

Reset A=A-B-C+A-B.-C+A-B-C+A-B-C

By the same “‘trick” as before the first and fourth terms drop out, leaving:

Reset A=A+~B-C+A.B:+C

The rest is easy: to find the eguation for Set C, look at the Truth Table to see when the
carry is 1 and you will see that:

SetC=A-B:-C+A-B.C+A-B-C+A:B+C
48

e ——

Again, since C iz already 1 in the first and third terms the equation becomes:

SetC=A-B-C+A-B-C

Factoring common terms gives:
SetC=A -B(C+0C)
setC=A-B

Now to find the expression for Reset C. Since the process is repetitious we shall just
write the equations.

RasetC:E-E-E+E-E-C+E-B'E+A~E-E
=A-B-C+A-B.-¢
=E-E{E+C}

Reset C=A- B
EXFERIMENT 14
The procedure is exactly the same for this experiment as for the previous one.
To find the equation for Reset A, look at the Truth Table end see when the answer is 0.
That is when:

A=land B=land C=10

or

A=Dand B=0and C=0
or

A=land B=Dand C=1
or

A=zlandB=1andC=1

or in algebraic form:

Reset A=A -B-C+A-B-C+A-B-C+A-B-C

The second and fourth terms drop out, as before, since the A Flip-Flop must be 0 for the
functions to be true.

This leaves:

Regset A=A-B.C+A-B.C

Next, we reset the C Flip-Flop when there is no borrow necessary. That is:

Reset C=A - B:-C+A-B-C+A.-B-CT+A-B.C
49

Now the first and third terms drop out as before, leaving
ResetC=A-B(C+C)
or Resst C=A.B

And lastly, we want to Set C when a borrow is regquired.

1 3 4 5
TORlY T 2 TFla TE|s TFls ¥
. |
E ‘
1 |
1 3 a4 5
T orly T 2 T Fly Trls Trls v
8 ‘ |
| |
1 3 a 5
y | 1S 2z TElx »or|ly *HlE T
’ |
E ‘
e |
1 3 a4 5
T F(Y T 2 T Fla Tl TRl s T
A |
E ‘
Z
50

